
Source of Acquisition
NASA Ames Research Center

Evolving Multi Rover Systems in Dynamic and
Noisy Environments

Kagan Tumer' and Adrian Agogino2

NASA Ames Research Center

Moffett Field, CA 94035, USA
ktumerQmail.arc.nasa.gov
Adrian Agogino
UC Santa Cruz, NASA Ames Research Center

adrianQemail.arc.nasa.gov

Mailstop 269-4

Mailstop 269-3

In this chapter, we address how to evolve control strategies for a collective: a
set of entities that collectively strives to maximize a global evaluation func-
tion that rates the performance of the full system. Addressing such problems
by directly applying a global evolutionary algorithm to a population of col-
lectives is unworkable because the search space is prohibitively large. Instead,
we focus on evolving control policies for each member of the collective, where
each member is trying to maximize the fitness of its own population. The
main difficulty with this approach is creating fitness evaluation functions for
the members of the collective that induce the collective to achieve high per-
formance with respect to the system level goal. To overcome this difficulty, we
derive member evalution functions that are both aligned with the global eval-
uation function (ensuring that members trying to achieve high fitness results
in a collective with high fitness) and sensitive to the fitness of each member
(a member's fitness depends more on its own actions than on aktions of other
members).

In a diacult rover coordination problem in dynamic and noisy environ-
ments, we show how to construct evaluation functions that lead to good collec-
tive behavior. The control policy evolved using aligned and member-sensitive
evaluations outperforms global evaluation methods by up to a factor of four.
in addition we show that the collective continues to perform well in the pres-
ence of high noise levels and when the environment is highly dynamic. More
notably, in the presence of a larger number of rovers or rovers with noisy
sensors, the improvements due to the proposed method become significantly
more pronounced.

2 Kagm Turner and Adrian Agogino

1 Introduction

In this chapter we show how to extend evolutionary control methods to dy-
namic domains that contain many devices that need to be controlled in the
presence of noise. These methods are applicable to many distributed domains
such as coordinating multiple robots, controlling constellations of satellites,
and routing over a data network promises significant application opportuni-
ties [3, 11, 141. In this chapter we specifically look at the problem of coor-
dinating multiple rovers in such a way that they maximize their collective
observational capability.

The challenge in this problem is efficiently evolving control policies for
the rovers, such that they collectively maximize a single objective function,
which is in general a non-linear function over the actions of all the rovers.
The straight-forward approach to this problem is to directly evolve the entire
collective by using a population of collectives and having the evolutionary
operators work directly on the collective to produce a solution with high
global fitness. Unfortunately this method is impractical at best and impossible
at worst, since the search space for such an approach is simply too large for all
but the simplest problems. Instead we will approach this problem by having
each rover in the collective have its own population of control policies, using
its own fitness evaluation function to evaluation these control policies. The
key issue in such an approach is to ensure that the rover fitness evaluation
function possesses the following two properties: (i) it is aligned with the global
evaluation function, ensuring that the rovers that maximize their own fitness
do not hinder one another and hurt the fitness of the collective; and (ii) it is
sensitive to the fitness of the rover, ensuring that it provides the right selective
pressure on the rover (i.e., it limits the impact of other rovers in the fitness
evaluation function).

In this chapter we show how to create fitness evaluation functions that
have these properties. We then show how to use them in a multi-rover domain
that is challenging in the following two ways:

1. The environment is dynamic, meaning that the conditions under which the
rovers evolve changes with time. The rovers need to evolve general control
policies, rather than specific policies tuned to their current environment.

2. The rovers’ sensors and actuators are noisy, meaning that the signals
they receive from the environment are not reliable and the control signals
that the robot sends out are not reliably carried out. The rovers need to
demonstrate that the control policies are not sensitive to such fluctuations

* in sensor readings and control outputs.

This domain is modeled reflect the important properties evolutionary control
systems need to have to be deployed. Significantly this domain does not have
any “episodes” or “trials.” The environment changes continuously and the
rovers move coatinuoi& where neither the environment or rovers’ positions

Evolving Multi Rover Systems in Dynamic and Noisy Environments 3

are ever reset. The rovers must evolve in-situ and be able to use the control
policies in an environment different from what they were evolved in.

In Section 2 we discuss the properties needed in a collective, how to evolve
rovers using evaluation functions possessing such properties along with a dis
cussion of related work. In section 3 we present the “Rover Problem” where a
planetary rovers in a collective use neural networks to determine their move-
ments based on a continuous-valued array of sensor inputs. Section 4 presents
the performance of the rover collective evolved using rover evaluation func-
tions in dynamic, noisy and communication limited domains. The results show
the effectiveness of the rovers in gathering information is 400% higher with
properly derived rover fitness functions than in rovers using a global evalua-
tion function. Finally Section 5 we discuss the implication of these results and
their applicability to different domains.

2 Evolving a Collective

In general, one has three possible approaches based on evolutionary compu-
tation to design control policies for collectives.

1. One can operate directly on the collective, treating it as an instance of
a solution and operate on populations of collectives. In this case, the
standard evolutionary algorithms are used to select for the collective that
best satisfies a predetermined global evaluation function.

2. One can operate on members in the collective, treating each rover as an
instance of a solution and operate of populations of rovers. In this case,
the evolutionary algorithms are used to select the rovers constituting the
collective based on how a given rover satisfies the predetermined global
evaluation function.

3, One can operate on members in the collective, treating each rover as an
instance of a solution and operate of populations of rovers. In this case,
the evolutionary algorithms are used t o select the rovers constituting the
collective based on how a given rover satisfies a specialized rover evaluation
function tuned to the fitness of that rover.

The f is t method presents a computationally daunting task in all but the
simplest problems. Finding good control strategies is difficult enough for single
controllers, but the search space become prohibitively large when they are
concatenated into an “individual” representing the full collectives. Even if
good rovers are present in the collective, there is no mechanism for isolating
and selecting them when the collective to which they belong performs poorly.
As a consequence, this approach is practically unworkable in large continuous
domains.

The second method addresses part of the issue: Because the rovers in the

However, this method introduces a new problem: How is a rover’s evolution
coiiecf&e are evoiv-ed hdepen&n$;y-, it the exj&F;Gz ef the s$zte apxe.

4 Kagan Tumer and Adrian Agogino

guided when the evaluation function depends on the fitness of all the other
rovers? In small collectives, this method provides good solutions, but as the
collectives size increases, this problem becomes more and more acute. As a
consequence, this approach, though preferable to the first approach in some
ways, is unlikely to provide good solutions in large collectives.

The third method provides a specialized rover evaluation function for each
rover. This approach, cleans up the fitness signal a rover receives, but intro-
duces a new twist to the problem: How does one ensure that the specialized
rover evaluation functions are aligned with the global evaluation function? In
other words, the fundamental question is how to guarantee that the collective
evolved using rover evaluation functions will have a high fitness with respect
to the global evaluation function. In this chapter we discuss the second and
third approaches, focusing on how to select rover evaluation function in a
formal manner as discussed below.

2.1 Rover Evaluation Function Properties

Given a global evaluation function to be maximized, this section presents the
desirable properties that rover-specific evaluation functions must have. Let
the global evaluation function be given by G(z) , where z is the state of
the full system (e.g., the position of all the rovers in the system, along with
their relevant internal parameters and the state of the environment). Let the
rover evaluation function for rover i be given by gi(,z). The first desirable
proberty we want the private evaluation functions of each agent to have is
high factoredness with respect to G, intuitively meaning that an action taken
by an agent that improves its private evaluation function also improves the
global evaluation function (i.e. G and gr, are aligned). Formally, the degree of
factoredness between gi and G is given by:

(1)
1, 1,) ’zL[(gz(z) - gz(.’>) (Gk) - G(z’))Idz’dz

.f, .f,, dz’dz &* =

where z’ is a state which only differs from z in the state of rotier i, and u[x]
is the unit step function, equal to 1 when x > 0. Intuitively, a high degree
of factoredness between gi and G means that a rover evolved to maximize gi
will also maximize G.

Second, the rover evaluation function must be more sensitive to changes
in that rover’s fitness than to changes in the fitness of other rovers in the
coiiective. Formally we quantify the rover-sensitivitg of evaluation fmction
gi, at z as:

(2) I [119i(Z> - gz(z‘ - 4 + Zi>ll

119i(z) - ga(z - zi + z;)ll Xi&> = Ed

where Ez/[.] provides the expected value over possible values of z‘, and (z -
zz + z;) ~ ~ t e k i o n specifies the stzte ~ec?x?r here the cc?rope~e~ts cd im.er i
have been removed from state z and replaced by the components of rover

Evolving iVIulti Rover Systems in Dynamic and Noisy Environments 5

z from state z’. So at a given state z, the higher the rover-sensitivity, the
more gz(z) depends on changes to the state of rover i, i.e., the better the
associated signal-to-noise ratio for i. Intuitively then, higher rover-sensitivity
means there is “cleaner” (eg., less noisy) selective pressure on rover i.

As an example, consider the case where the rover evaluation function of
each rover is set to the global evaluation function, meaning that each rover is
evaluated based on the fitness of the full collective (e.g., approach 2 discussed
in Section 2). Such a system will be fully factored by the definition of Equa-
tion l. However, the rover fitness functions will have low rover-sensitivity (the
fitness of each rover depends on the fitness of all other rovers).

2.2 Difference Evduation Functions

Let us now focus on improving the rover-sensitivity of the evaluation functions.
To that end, consider difference evaluation functions [17], which are of the
form:

where z-, contains all the states on which rover i has no effect, and c, is a
k e d vector. In other words, all the components of z that are affected by rover
i are replaced with the fixed vector q. Such difference evaluation functions are
fully factored no matter what the choice of e,, because the second term does
not depend on i’s states [17] (e.g., D and G will have the same derivative with
respect to 2%). Furthermore, they usually have far better rover-sensitivity than
does a global evaluation function, because the second term of D removes some
of the effect of other rovers (i.e., noise) from i’s evaluation function. In many
situations it is possible to use a e, that is equivalent to taking rover i out of
the system. Intuitively this causes the second term of the difference evalua-
tion function to evaluate the fitness of the system without i and therefore D
evaluates the rover’s contribution to the global evaluation.

T’nough for linear evaluation factions Di simply cancels ?ut the effect of
other rovers in computing rover i’s evaluation function, its applicability is not
restricted to such functions. In fact, it can be applied to any linear or non-
linear global utility function. However, its effectiveness is dependent on the
domain and the interaction among the rover evaluation functions. At best, it
fully cancels the effect of all other rovers. At worst, it reduces to the global
evaluation function, unable to remove any terms (e.g., when z-, is empty,
meaning that rover i effects all states). In most real world applications, it
falls somewhere in between, and has been successfully used in many domains
including rover coordination, satellite control, data routing, job scheduling
and congestion games [3, 15, 171. Also note that the computation of D, is a
‘birtual” operation in that rover i computes the impact of its not being in the

its D,, and computationally it is often easier to compute than the global
system. There is need to yp-p~:&e the s.irctam LJI”l-- fnr -1- m r h d__ _mvpy tc c~m-piltp

6 Kagan Tumer and Adrian Agogino

evaluation function 1151. Indeed in the problem presented in this chapter, for
rover i, D, is easier to compute than G is (see details in Section 4).

2.3 Related Work

Evolutionary computation has a long history of success in singIe agent and
multi-agent control problems [16, 10, 7, 2, lj. Advances in evolutionary com-
putation methods in single agent domains tend to result from improvements in
search methods. In [lo] this is accomplished through fuzzy rules in a helicopter
control problem, while in [16] cellular encoding is used to improve performance
on pole-balancing control. Similarly [7] addresses planetary rover control by
having genetic algorithms search through a space of plans generated from a
planning algorithm.

Many advances in evolutionary computation for multi-agent control have
been accomplished through the use of domain specific fitness functions. Ant
colony algorithms [6] solve the coordination problem by utilizing “ant trails”
that provide implicit fitness functions resulting in good performance in path-
finding domains. In [2], the algorithm takes advantage of a large number of
agents to speed up the evo1ut;ion process in certain domains, but uses greedy
fitness functions that are not generalIy factored. &so outside of evolutionary
computation, coordination between a set of mobile robots has been accom-
plished through the use of hand-tailored rewards designed to prevent greedy
behavior [12]. While highly successful in many domains all of these meth-
ods differ from the methods used in this chapter in that they lack a general
framework for efficient evolution in multi-agent systems.

3 Continuous Rover Problem

In this section, we show how evolutionary computation with the difference
evaluation function can be used effectively in the Rover Problem3. In this
problem, there is a collective of rovers on a two dimensional @me, which is
trying to observe points of interests (POIs). Each POI has a value associated
with it and each observation of a POI yields an observa!ion value inversely
related to the distance the rover is from the POI. In this chqker the dis-
tance metric will be the squared Euclidean norm, bounded by a minimum
observation distance, bm,:4

This problem was first presented in [3].
* The square Euclidean norm is appropriate for many natural phenomenon, such as

light and signal attenuation. However any other type of distance metric could also
Lzjax.&TA . . is ia&&d

to prevent singularities when a royef is very close to a POI.
‘oe -wed & ieq-k-ed SY the iiio~:e?l

Evolving Multi Rover Systems in Dynamic and Noisy Environments 7

The global evaluation function is given by:

where V, is the value of POI j, L, is the location of POI j and L,,t is the
location of rover i at time t. Intuitively, while any rover can observe any
POI, a s far as the global evaluation function is concerned, only the closest
observation matters5.

Fig. 1. Diagram of a Rover’s Sensor Inputs. The world is broken up into four
quadrants relative to rover’s position. In each quadrant one sensor senses points of
interests, while the other sensor senses other rovers.

3.1 Rover Capabilities

At every time step, the rovers sense the world through eight continuous sen-
sors. From a rover’s point of view, the world is divided up into four quadrants
relative to the rover’s orientation, with two sensors per quadrant (see Figure
1). For each quadrant, the first sensor returns a function of the POIs in the
quadrant at time t. Specifically the first sensor for quadrant q returns the sum

Similar evaluation functions could also be made where there are many different
levek of information gain depending on the position of the rover. For example 3-D
imaging may utilize different images of the same object, taken by two ciEerent
royers.

8 Kagan Tumer and Adrian Agogino

of the values of the POIs in its quadrant divided by their squared distance
to the rover and scaled by the angle between the POI and the center of the
auadrant:

(6)

where Jq is the set of observable POIs in quadrant q and /t9J,q/ is the magnitude
of the angle between POI j and the center of the quadrant. The second sensor
returns the sum of square distances from a rover to all the other rovers in the
quadrant at time t scaled by the angle:

where Nq is the set of rovers in quadrant q and 16’z1,q1 is the magnitude of the
angle between rover i’ and the center of the quadrant.

The sensor space is broken down into four regions to facilitate the input-
output mapping. There is a trade-off between the granularity of the regions
and the dimensionality of the input space. In some domains the tradeoffs may
be such that it is preferable to have more or fewer than four sensor regions.
Also, even though this chapter assumes that there are actually two sensors
present in each region at aII times, in real problems there may be only two
sensors on the rover, and they do a sensor sweep at 90 degree increments at
the beginning of every time step.

3.2 Rover Control Strategies

s and two sensors per quadrant, there are a total of eight
continuous inputs. This eight dimensional sensor vector constitutes the state
space for a rover. At each time step the rover uses its state to compute a two
dimensional output. This output represents the x, y movement relative to the
rover’s location and orientation. Figure 2 displays the orientation of a rover’s
output space.

The mapping from rover state to rover output is done through a Multi
Layer Perceptron (MLP), with eight input units, ten hidden units and two
output units 6. The MLP uses a sigmoid activation function, therefore the
outputs are limited to the range (0, l) . The actual rover motions dx and dy,
are determined by normalizing and scaling the MLP output by the maximum
distance the rover can move in oiie time step. ?doze pi-eckdy, ~2 have:

dx dmaz(ol - 0.5)
dy = dmaz(02 - 0.5)

Note that other forms of continuous reinforcement learners could also be used
ir&e& of evo~u~~oi~ary 2e*w-cr&. &=-e.”.?? ze.&-d n&&7erla zy”e idy”e& f9r
this domain given the continuous inputs and bounded continuous outputs.

Evolving Multi Rover Systems in Dynamic and Noisy Environments 9

Fig. 2. Diagram of a Rover’s Movement. At each time step the rover has two
continuous outputs (ds, dy) giving the magnitude of the motion in a two directional
plane relative to the rover’s orientation.

where d,,, is the maximum distance the rover can move in one time step, 01

is the value of the first output unit, and 02 is the value of the second output
unit.

3.3 Rover Selection

The MLP for a rover is selected using an evolutionary algorithm as highlighted
in approaches two and three in Section 2. In this case’ each rover has a pop-
ulation of MLPs. At each N time steps (N set to 15 in these experiments),
the rover uses €-greedy selection (E = 0.1) to determine which MLP it will
use (e.g., it it selects ihe best MLP from its population with 90% probability
and a random MLP from its population with 10% probability). The selected
MLP is then mutated by adding a value sampled from the Cauchy Distribu-
tion (with scale parameter equal to 0.3) to each weight, and is used for those
N steps. At the end of those N steps, the MLP’s performance is evaluated by
the rover’s evaluation function and re-inserted into its population of MLPs,
at which time, the poorest performing member of the population is deleted.
Both the global evaluation for system performance and rover evaluation for
MLP selection is computed using an N-step window, meaning khat the rovers
only receive an evaluation after N steps.

While this is not a sophisticated evolutionary algorithm, it is ideal in this
work since our purpose is to demonstrzte the impact of principled evaluation
functions selection on the performance of a collective. Even so, this algorithm
has shown to be effective if the evaluation function used by the rovers is
factored with G and has high rover-sensitivity. We expect more advanced
evolutionary computation algorithms used in conjunction with these same
evaluation functions to improve the performance of the collective further.

3.4 Evolving Control Strategies in a Collective

I ne key to success in this approach is to determine tile com& over wzhatioli
functions. In this work we test three different evaluation function for rover

7

m 1

10 Kagan Turner and Adrian Agogino

selection. The first evaluation function is the global evaluation function (G),
which when implemented results in approach two discussed in Section 2:

(8)

The second evaluation function is the “perfectly rover-sensitive” evaluation
function (PI:

(9)

The P evaluation function is equivalent to the global evaluation function in
the single rover problem. In a collective of rover setting, it has infinite rover-
sensitivity (in the way rover sensitivity is defined in Section 2) . This is because
the P evaluation function for a rover is not affected by the states of the
other rovers, and thus the denominator of Equation 2 is zero. However the P
evaluation function is not factored. Intuitively P and G offer opposite benefits,
since G is by definition factored, but has poor rover-sensitivity. The final
evaluation function is the difference evaluation function. It does not have as
high rover-sensitivity as P, but is still factored like G. For the rover problem,
the difference evaluation function, D, becomes:

1 - v, - v,
minzJ+ w, , L , t) 0% = t j [x min,! 5(L3, LZ/,t) 3

The second term of the D is equal to the value of all the information collected
if rover i were not in the system. Note that for all time steps where i is not
the closest rover to any POI, the subtraction leaves zero. As mentioned in
Section 2.2, the difference evaluation in this case is easier to compute as long
as rover i knows the position and distance of the closest rover to each POI
it can see. In that regard it requires knowledge about the position of fewer
rovers than if it were to use the global evaluation finetion.

4 Results

We performed extensive simulation to test the effectiveness of the different
rover evaluation function under a wide variety of environmental conditions
and rover capabilities. In these experiments, each rover had a population of
MLPs of size 10. The world was 75 units long and 75 units wide. All of the
rovers started the experiment at the center of the world. Unless otherwise
state as in the scaling experiments, there were 30 rovers in the simulations.
The maximum distance the rovers could move in one direction during a time
step, &,,, wss sei to 3. The mvem c=u!d ?,=t we beycnd the bcunds of the
world. The minimum observation distance, S,,,, was equal to 5.

Evolving Multi Rover Systems in Dynamic and Noisy Environments 11

changed environment

Fig. 3. Sample POI Placement. Left-Top: Environment at time = 10. Right-Top:
Environment at time = 120. Bottom: Environment at time = 1500. Environment at
time step 10 is similar to environment at time step 120, but significantly different
than environment at time step 1500. Rovers must to able to use their control policies
evolved from earlier time step, in future changed environments.

In these experiments the environment was dynamic, meaning that the POI
locations and values changed with time. There were as many POIs as rovers,
and the value of each POI was set to between three and five using a uniformly
random distribution. In these experiments, each POI disappeared with prob-
ability 2.5%, and another one appeared with the same probability at 15 time
step intervals. Because the experiments were run for 3000 time steps, the initial
and final environments had little similarities. All results were averaged over at
least one hundred independent trials (except for the seventy ageat riiiis where
there were thirty trials). For each experiment and trial the weights of the
neural network were set to random using the Cauchy distribution (parameter
of 0.5).

Results for episodic environments where the agents were restored to their
initial state at the end of each trial were reported in [3]. In such a case the
rovers evolve specific control policies tuned to the particular environment

12 Kagan Turner and Adrian Agogino

in which they are trained. Though useful in domains where the simulated
environment closely matches the environment in which the rovers will operate,
this approach has limited applicability in general. A more desirable approach
is for the rovers to evolve efficient policies that are solely based on their
sensor inputs and not on the specific configuration of the POIs. The dynamic
environment experiments reported here expIore this premise and provide rover
control policies that can be generalized from one set of POIs to another,
regardless of how significantly the environment changes. Figures 3 shows an
instance of change in the environment throughout a simulation. The final POI
set is not particularly close to the initial POI set and the rovers are forced
to focus on the sensor input-output mappings rather than focus on regions in
the (x,y) plane.

4.1 Evolution in Noise Free Environment

The first set of experiments tested the performance of the three evaluation
functions'in a dynamic noise-free environment for 30 rovers. Figure 4 shows the
performance of each evaluation function. In all cases, performance is measured
by the same global evalG&ion function, regardless of the evaluation function
used to evolve the system. All three evaluation functions performed adequately
in this instance, though D, outperformed both P and G.

500 1000 1500 2000 2500
Number of Steps

Fig. 4. Performance of a 30-rover collective for all three evaluation functions in
cohz--free e ~ v i ~ o m z e ~ ~ . IXfEzexe ev&&ion f;ir,cticcn p rc~ ide~ the best cdective
performance because it is both factored and rover-sensitive.

The evolution of this system also demonstrate the different properties of
the rover evaluation functions. After initial improvements, the system with

function has low rover-sensitivjty. Because the fitness of each rover depends on
e-;&&,tiOG F&yctior: i=.,prs."res slcy,Tly. This is Sec"L=sp thp G p.,7&&bn

Evolving Multi Rover Systems in Dynamic and Noisy Environments 13

the state of all other rovers, the noise in the system overwhelms the evaluation
function. P on the other hand has a different problem: After an initial im-
provement, the performance of systems with this evaluation function decline.
This is because though P has high rover-selectivity, it is not fully factored
with the global evaluation function. This means that rovers selected to im-
prove P do not necessarily improve G. D on the other hand is both factored
and has high rover-sensitivity. As a consequence, it continues to improve well
into the simulation as the fitness signal the rovers receive are not swamped
by the states of other rovers in the system. This simulation highlights the
need for having evaluation function that are both factored with the global
evaluation function and have high rover-sensitivity. Having one or the other
is not sufficient.

4.2 Scaling in Noise-free Environments

The second set of experiments focuses on the scaling properties of the three
evaluation functions in a dynamic noise-free environment. Figure 5 shows the
performance of each evaluation function at t=3000 for a collective of 10 to
70 rovers (where the number of POIs is equal to the number of rovers). Eor
each case, the results are qualitatively similar to those reported above, except
where there are only 5 rovers, in which case P performs as well as G. This
is not surprising since with so few rovers, there are almost no interactions
among the rovers, and in as large a space as the one used here, the 5 rovers
act almost independently.

10 20 30 40 50 60 70
hll.mknr nf ,.”*,.””, -, , *-....

Fig. 5. Scaling properties of the three evaluation functions. The D evaluation func-
tion not only outperforms the alternatives, but the margin by which it outperforms
them increases as the size of the collective goes up.

As the &e of tiie coEective iilcrewes though, aii iiitei.est.7g
emerges: The performance of both P and G drop at a faster rate than that

14 Kagan Tumer and Adrian Agogino

of D. Again, this is because G has low rover-sensitivity and thus the prob-
lem becomes more pronounced as the number of rovers increases. Similarly,
as the number of rovers increases, P becomes less and less factored. In fact
the performance of rovers using P is even worse than random when there are
many rovers because the rovers’ greedy actions make them focus on only a
few POIs, while the random rovers at least distribute themselves among the
POIs. D on the other hand handles the increasing number of rovers quite ef-
fectively. Because the second term in Equation 3 removes the impact of other
rovers from rover i, increasing the number of rovers does very little to limit
the effectiveness of this rover evaluation function. This is a powerful result
suggesting that D is well suited to evolve large collectives in this and similar
domains where the interaction among the rovers prevents both G and P from
performing well. This result also supports the intuition expressed in Section 2
that approach 2 (Le., evolving rovers based on the fitness of the full collective)
is ill-suited to evolving collectives in all but the smallest examples.

4.3 Evolution in Noisy Environment

The third set of experiments tested the performance of the three evaluation
functions in a dynamic environment for 30 rovers with noisy sensors. Fig-
ure 6 shows the performance of each evaluation function when both the input
sensors and the output values of the rovers have 5% noise added. All three
evaluation functions handle the noise well. This result is encouraging in that
it shows that not only simple evaluation functions such as P can handle mod-
erate amounts o€ noise in their sensors and outputs, but so can D. In other
words, considering the impact of other rovers to yield a factored evaluatLon
function does not cause to compound moderate noise in the system and over-
whelm the rover evaluation.

Figure 7 shows the noise sensitivity of the three different evaluation func-
tions. The performance is reported as a function of additive noise to sensors
as the percentage shown on the x-axis (e.g., 0.5 means the magnitude of the
added noise is half that of the sensor value.) The results are svown as the D
is the most sensitive to high levels of noise, though even at 80% noise it still
far outperforms both G and P. This is an encouraging result in the power of
the D evaluation function is that it “cleans up’’ the evaluation function for a
rover (e.g., it has high rover-sensitivity). Adding noise, starts to cancel this
property of D , but even when half the signal being noise does not prevent D
from far outperforming D and P. Interestingly, rovers using P actually per-
form marginally better as noise increases, demonstrating the importance of
factoredness. Adding noise to the system actualIy hindered these rovers from
learning some counter-productive actions.

Evolving Multi Rover Systems in Dynamic and Noisy Environments 15

500 1000 1500 ZOW 2500
Number of Steps

Fig. 6. Performance of a 30-rover collective €or all three evaluation functions when
the rover sensors and outputs have 5% noise.

1300
u + I

laoo 1180 t

Level of Noise

Fig. 7. Sensitivity of the three evaluation functions to the degree of noise in their
sensors.

5 Discussion

Extending the success of evolutionary algorithms in continuous single-controler
domains to large, distributed multi-controller domains has been a challenging
endeavor. Unfortunately the direct approach of having a population of coiiec-
tives and applying the evolutionary algorithm to that population results in a
prohibitively large search space in most cases. As an alternative, this chapter
presents a method for providing rover specific evaluation functions to directly
evolve individual rovers in collective. The fundamental issue in this approach
is in determining the rover specific evaluation firnctions that are both aligned

16 Kagan Turner and Adrian Agogino

with the global evaluation function and are as sensitive as possible to changes
in the fitness of each member.

In dynamic, noise-free environments rovers using the difference evaluation
function D, derived from the theory of collectives, were able to achieve high
levels of performance because the evaluation function was both factored and
highly rover-sensitive. These rovers performed better than rovers using the
non-factored perfectly rover-sensitive evaluation and more than 400% better
(over random rovers) than rovers using the hard to learn global evaluations.

We then extended these results to rovers with noisy sensors, rovers with
limited communication capabilities and larger collectives. In each instance
the collectives evolved using D performed better than alternative and in most
cases (e.g., larger collectives) the gains due to D increase as the conditions
worsened. These results show the power of using factored and rover-sensitive
fitness evaluation functions, which allow evolutionary computation methods to
be successfully applied to large distributed systems in real world applications
where the rover sensors and actuators cannot be noise-free.

1

2.

3.

4.

5.

6.

7.

8.

9.

10.

A. Agal5 and G. A. Bekey. 4 genetic algorithm-based controller for decentralized
multi-agent robotic systems. In In Proc. of the IEEE International Conference
of Evolutionary Computing, Nagoya, Japan, 1996.
A. Agogino, K. Stanley, and R. Miikkulainen. Online interactive neuro-
evolution. Neural Processzng Letters, 11:29-38, 2000.
A. Agogino and K. Turner. Efficient evaluation functions for multi-rover systems.
In The Genetic and Evolutionary Computation Conference, pages 1-12, Seatle,
WA, June 2004.
T. Balch. Behavioral diversity as multiagent cooperation. In Proc. of SPIE '99
Workshop on Multiagent Systems, Boston, MA, 1999.
G. Baldassaxre, S. Nolfi, and D. Parisi. Evolving mobile robots able to display
collective behavior. Artificzal Life, pages 9: 255-267, 2003.
M. Dorigo and L. M. Gambardeila. Ant colony systems: A cooperative bar i i ig
approach to the travelling salesman problein. IEEE Dansactiods on Evolution-
ary Computation, 1(1):53-66, 1997.
S . Farritor and S. Dubowsky. Planning methodology for planetary robotic ex-
ploration. In ASME Journal of Dynamic Systems, Measurement and Control,
volume 124, pages 4: 698-701, 2002.
D. Floreano and F. Mondada. Automatic creation of an autonomous agent: Ge-
netic evehtinn nf a nemd-network driven rob& In Proc. of Conf. on Simulation
of Adaptive Behavior, 1994.
F. Gomez and R. Miikkulainen. Active guidance for a M e s s rocket through
neuroevolution. In Proceedings of the Genetic and Evolutionary Computation
Conference, Chicago, Illinois, 2003.
F. HofJhann, T.-J. Koo, and 0. Shakernia. Evolutionary design of a helicopter
allfnpiknt. ID A ~ Z J ~ E C P S in. Soaft Comp - En,gmeering Design and Manufac-
turing, Part 3: Intelligent Control, pages 201-214, 1999.

